ar X iv : 0 80 5 . 25 99 v 2 [ m at h . D G ] 9 J un 2 00 8 CONCURRENT π - VECTOR FIELDS AND ENERGY β - CHANGE Nabil

نویسندگان

  • Nabil L. Youssef
  • S. H. Abed
  • A. Soleiman
چکیده

The present paper deals with an intrinsic investigation of the notion of a concurrent π-vector field on the pullback bundle of a Finsler manifold (M,L). The effect of the existence of a concurrent π-vector field on some important special Finsler spaces is studied. An intrinsic investigation of a particular β-change, namely the energy β-change (L̃(x, y) = L(x, y) + B(x, y)with B := g(ζ, η); ζ being a concurrent π-vector field), is established. The relation between the two Barthel connections Γ and Γ̃, corresponding to this change, is found. This relation, together with the fact that the Cartan and the Barthel connections have the same horizontal and vertical projectors, enable us to study the energy β-change of the fundamental linear connection in Finsler geometry: the Cartan connection, the Berwald connection, the Chern connection and the Hashiguchi connection. Moreover, the change of their curvature tensors is concluded. It should be pointed out that the present work is formulated in a prospective modern coordinate-free form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 5 . 25 99 v 3 [ m at h . D G ] 2 6 A ug 2 00 9 CONCURRENT π - VECTOR FIELDS AND ENERGY β - CHANGE

The present paper deals with an intrinsic investigation of the notion of a concurrent π-vector field on the pullback bundle of a Finsler manifold (M,L). The effect of the existence of a concurrent π-vector field on some important special Finsler spaces is studied. An intrinsic investigation of a particular β-change, namely the energy β-change (L̃(x, y) = L(x, y) + B(x, y)with B := g(ζ, η); ζ bei...

متن کامل

ar X iv : h ep - t h / 05 11 04 8 v 2 1 9 D ec 2 00 5 Zero - point energy in spheroidal geometries

We study the zero-point energy of a massless scalar field subject to spheroidal boundary conditions. Using the zeta-function method, the zero-point energy is evaluated for small ellipticity. Axially symmetric vector fields are also considered. The results are interpreted within the context of QCD flux tubes and the MIT bag model.

متن کامل

ar X iv : c on d - m at / 9 51 00 95 v 1 1 8 O ct 1 99 5 Metamagnetism and Fermi Surface in the Anderson Lattice Model

We investigate magnetization as functions of external magnetic field H in the U-infinite Anderson lattice model within the leading order approximation in the 1/N-expansion. At T = 0, at H = H M where the Zeeman energy is equal to a certain characteristic energy in the system, the magnetization curve has a kink and the differential susceptibility dM/dH shows a jump. At finite temperature, dM/dH ...

متن کامل

ar X iv : h ep - t h / 05 11 04 8 v 1 4 N ov 2 00 5 Zero - point energy in spheroidal geometries

We study the zero-point energy of a massless scalar field subject to spheroidal boundary conditions. Using the zeta-function method, the zero-point energy is evaluated for small ellipticity. Axially symmetric vector fields are also considered. The results are interpreted within the context of QCD flux tubes and the MIT bag model.

متن کامل

ar X iv : g r - qc / 9 90 10 19 v 1 7 J an 1 99 9 REMARKS ON SUPERENERGY TENSORS

We define (super) n-energy tensors for non-gravitational fields. The possibility of interchange of superenergy between gravitational and other fields is considered. 1 The Bel-Robinson tensor and its properties. The Bel-Robinson (BR) tensor 1,2 is defined by T αβλµ ≡ C αρλσ C β µ ρ σ + * C αρλσ * C β µ ρ σ (1) where C αρλσ is the Weyl tensor and * indicates the usual dual operation: * C αβλµ ≡ (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009